| 1. | Normal families and shared values of holomorphic functions 全纯函数的分担值与正规族 |
| 2. | Normality of a family of holomorphic functions 一族全纯函数的正规定则 |
| 3. | Normality of holomorphic functions with differential polynomial 涉及微分多项式的全纯函数的正规性 |
| 4. | Relations of families of stieltjes integrals and several holomorphic function spaces on cn 积分族与几个全纯函数空间的关系 |
| 5. | Pointwise multipliers between two holomorphic function spaces in the unit ball of cn 中单位球上两个全纯函数空间之间的点乘子 |
| 6. | The boundedness of weighted composition operators on several holomorphic function spaces on the unit ball of cn 中单位球上几个全纯函数空间上加权复合算子的有界性 |
| 7. | In this paper , we discuss the normality of a family of holomorphic functions which improved results due to xuyan and hua xing - hou ( superscript [ 2 ] ) 摘要本文讨论了全纯函数族的正规性,改进了徐焱和华歆厚(上标[ 2 ] )的结果。 |
| 8. | In this paper , the authors generalize the definitions of several spaces of holomorphic functions from the unit disc in c to the unit ball in c ( superscript n ) , where the growth of holomorphic functions depends on a weight function 摘要该文将几个全纯函数空间的定义从单复变数推广到多复变数,这些空间中全纯函数的增长性依赖于某个权函数。 |
| 9. | In this thesis , we consider the following three aspects : first , we compute the bergman kernel functions with explicit formulas on generalized hna domains ; second , we obtain the explicit formulas for extremal maps and extremal values between the ball and the super - cartan domain of the first type ; finally , we give sufficient conditions and necessary conditions that holomorphic functions become bloch functions on super - cartan domains 在这篇论文中,我们讨论了三个方面的内容:第一部分我们给出了四类广义华罗庚域的bergman核函数的显表达式;第二部分我们得到了第一类超cartan域与单位超球间的极值与极值映照;第三部分我们给出了四类超cartan域上全纯函数是bloch函数的充分条件与必要条件。 |
| 10. | A new analytical method for the plane elastic or thermoelastic problem on complex multiply connected region based upon the complex potential theory of elastic mechanics built by muskhelishvili . n . i . by combining the theory of sectionally holomorphic function , cauchy model integral , the analysis of the singularity of complex function and riemann boundary problem , the analysis relation between the complex potentials is obtained , and then the problem is transformed into solving an elementary complex potentials equation I弹性力学复势理论的基础上提出一种处理复杂多连通域平面弹性与热弹性问题新的分析方法,将复变函数的分区全纯函数理论,复势奇性分析, riemann边值问题与cauchy型积分相结合,求得各分区复势的解析关系,将问题归结为一个初等复势函数方程的求解。 |